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and to demonstrate, by an example, its application to practical problems.

(Communicated by T. E. Allibone, F.R.S.—Received 11 May 1951—Revised 1 April 1952)
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Electron-optical systems with curved axes—such as mass spectrographs and certain beta-ray
spectrometers—have long been in practical use, but there has been available no complete theory
of the aberrations of such systems. It is the object of the present paper to construct such a theory

An appropriate co-ordinate system is set up by means of a ray-axis together with its normal and
binormal. The electric and magnetic fields are then investigated with the help of tensor calculus;
the variational principle of electron optics is also put into tensor form. The integrand of the
variational equation may be separated into a series of polynomials, one of which determines the

paraxial imaging properties of the system and the rest of which determine the aberrations.

The condition is established for which, upon an appropriate transformation, either of the par-
axial ray equations contains only one off-axis co-ordinate. Subsequent investigations are restricted
to systems, which are termed ‘orthogonal’, for which this condition is satisfied. It is shown that,

in a certain sense, no orthogonal electron-optical system can be wholly divergent.

The second-order aberration and the zero-order and paraxial chromatic aberrations are then

upon aberrations of a change in the aperture position.
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Bureau of Standards, Washington D.C.

(ii) A suffix attached to ¢ or @, as ¢, or D,, indicates differentiation.
(iii) 4 suffix following a comma, as in H, ,, denotes covariant differentiation.

P investigated by the method of perturbation characteristic functions. All formulae are given in
their relativistic forms but their non-relativistic forms are indicated ; formulae are therefore given for
the calculation of the zero-order and paraxial relativistic correction. It is indicated to what
extent one forfeits control over the second-order aberration—and hence over the paraxial chro-
matic aberration also—by specifying that the paraxial behaviour of rays should be Gaussian.

As an example, the imaging properties of a helical beam moving in the field of a pair of coaxial
cylindrical electrodes are calculated. There is also an appendix which gives formulae for the effect

T This work was initiated while the author was a member of the Electron Physics Section, National
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156 P. A. STURROCK ON THE

(iv) A prime, as in k', denotes differentiation with respect to z.
(v) A superfix (r)’, as in m®, m®, etc., denotes the order of the dependence of the
quantity on the off-axis co-ordinates.
(vi) A superfix ‘1°, as in *V 3T denotes the derivative of the original quantity with
respect to the chromatic parameter e.
(vii) A4 superfix ‘R’, as in uPF, denotes the relativistic correction to the original
quantity.

(viil)  The suffix ‘0’, ‘a’, ‘b, or ‘¢’ indicates that a quantity is evaluated in the object,
aperture, image or ‘current’ plane, respectively; a pair of such suffixes denote the limits of
an integration.

(ix) An asterisk, as in D¥, converts a symbol appearing in chromatic-aberration
calculations into its counterpart in relativistic-correction calculations.

(x)  Angular brackets °{)’: we must take { f) = f or 1 according as our calculations are
to be relativistically correct or non-relativistic, respectively.

In the following list of symbols, the section in which the symbol is introduced is indicated.

symbol meaning

%A, %A, A, magnetic covariant vector potential (§2).

A, Ay A  alternative notation for A, A, A, (§2).

A,A4,4, values of %, A, A, on the ray-axis.

4,4, coefficients in expansion of m®" in terms of x, y  (§ 7).

B, B, coefficients in expansion of m(M in terms of u, v (§7).

C,, etc. coeflicients in the expansion of * V! in terms of u,, v,, u,, v, (§7).

D, D, coeflicients of zero-order chromatic aberration (§7).

DI, etc. operators changing f(u,v,u’,v") to u* df/du+..., etc. (§9).

E takes the value 1 or 0 according as there is or is not an electric field (§5).
E, E, coeflicients of the zero-order chromatic aberration in the image plane (§7).
S hk functions determining the general paraxial ray (§6).

F,,etc. coeflicients in the expansion of ® in terms of u, v, 4, v* (§8).

g see f.

8ij the metric tensor (§2).

G,, etc. functions from which F|, etc., may be evaluated (§8).

h see f and 1.

9. the magnetic field tensor (§3).

H,H,H, componentsofthe magnetic field strength on the ray-axis (§3).

L, g, kb take the values 1, 2,3 (§2).
J see .

k see f and i.

K, etc. coeflicients in the expansion of *V® in terms of u,, v,, u,, v, (§8).

L,,etc. coeflicients of the second-order aberration (§8).

m the integrand of the variational equation (§§1, 4).

M takes the values 1 or 0 according as there is or is not a magnetic field (§5).
M, etc. coeflicients of the second-order aberration in the image plane (§8).

nu’ nv

ray variables (§7).
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IMAGING PROPERTIES OF ELECTRON BEAMS 157
Ny, etc. coeflicients of the second-order aberration of the ray variables in the irhage
plane (§8). ”
Y the scalar momentum of the electron beam (§4).
J/ the value of p on the ray-axis (§4).
P, etc. coefficients in the expansion of m®T in terms of u, v, «’, v'  (§9).
q,7, 8,5t coefficients of the paraxial variational function (§6).
Q. Q, invariants formed from f, g, k1, k  (§6).
r see ¢.
R, etc. functions from which P, etc., may be evaluated (§9).
s see ¢. .
Sy, etc. coefficients in the expansion of * V@' in terms of u,, v,, u,, v, (§9).
4 see ¢.
T}, etc. coefficients of the paraxial chromatic aberration in the image plane (§9).
Uy v co-ordinates measured with respect to the principal axes (§6).
uv coefficients of the orthogonal paraxial variational function (§ 6).
v see u.
vV see U.
*V characteristic function (§§7,8,9).
XY co-ordinates measured with respect to the normal and binormal to the ray-
axis  (§2).
XL, x2, %3 alternative notation for x, y, z  (§2).
Y see x. |
z co-ordinate measured along the ray-axis (§2).

a,p,y,0 modified forms of £, g, h, £ (§6).

small increase of beam energy (§4).

electric potential (§3). '

value of ¢ on the ray-axis (§3).

magnetic scalar potential (§3).

curvature of ray-axis (§2).

torsion of ray-axis (§2).

angle between u-, v-axes and x-, y-axes (§6).

= YA g o

1. INTRODUCTION

Since the first papers of Busch (1926, 19277) on the focusing of electron beams in magnetic
fields, the electron optics of fields of rotational symmetry has been thoroughly developed
by Glaser (1933, 1935), Scherzer (Briiche & Scherzer 1934), Picht (1932) and many others.
The importance of rotationally symmetrical fields, the applications of which are well
known, is due principally to the ease and precision with which they may be realized, partly
to the formation of Gaussian images and the absence of second-order aberrations, but in
some measure also to their mathematical tractability.

There is another class of fields of great practical importance which comprises fields which
may be termed ‘mirror symmetrical’, since in each case the electric and magnetic scalar

potentials are symmetrical and antisymmetrical, respectively, about a plane. For such
19-2
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158 P. A. STURROCK ON THE

fields there is orthogonal—but not necessarily Gaussian—paraxial imaging and there are
second-order aberrations; the theoretical treatment of such fields is considerably more
complex than that of fields of the previous class.

There have been many investigations of particular fields of mirror symmetry such as
those of Herzog (1934), Marschall (1944) and Hachenberg (1948) which deal with mass
spectrometers; those of Svartholm & Siegbahn (1947) and Shull & Dennison (1947),
which treat beta-ray spectrometers; and those of Coggeshall (1947) and Ploch & Walcher
(1950), which investigate the important ‘fringe effect’.

Gabor (1951) has recently been led to investigate another class of electron-optical system
in which the electron beam moves in a helix under the influence of an electric field. Gabor’s
calculations, which are of particular interest since they consider the paraxial chromatic
aberration, are discussed further in § 10.

The author was at one time engaged upon the design of an instrument employing a
magnetic field which was of mirror symmetry but had no other simplifying characteristics.
The theoretical treatment of this system has been extended to include electric fields and
all assumptions of symmetry have been discarded. The present essay therefore treats the
imaging properties of electron beams in arbitrary static electromagnetic fields, and it is
hoped that the calculation of the properties of any electron-optical system with a curved
axis may conveniently be based upon the theory to be set out. ‘

Cotte (1938) was perhaps the first to treat at length the imaging of beams in arbitrary
fields. The co-ordinate system is so chosen that the metric tensor is diagonal; the use of
tensor calculus is thereby avoided, but the application of the theory to practical problems
is complicated. A large part of the thesis is devoted to a thorough discussion of paraxial
imaging properties, but the treatment of second-order aberrations is not so satisfactory.
Wendt (1943), giving an independent treatment, has also dealt fully with the paraxial
image formation but has not considered the second-order aberrations. The review article
by Hutter (1948) follows closely the work of Wendt. MacColl (1941, 1943) has given an
elegant but formal theory of the imaging properties of electron beams based upon the
paraxial ray equations; again there is no consideration of the second-order aberrations.

Since any investigation of an optical system is incomplete without a discussion of its
principal aberrations, we shall set out not only to obtain the paraxial properties, but also
to give explicit formulae for the zero-order and paraxial chromatic aberrations and the
second-order geometrical aberration; these will be found by the method of perturbation
characteristic functions (Sturrock 1951).

The method is to set up the variational equation of electron optics in the form

8fmdz=0, (1-1)

where m = m(u,v,u’,v’,z), z being the ‘ray-axis’ co-ordinate and u,v the ‘off-axis’ co-
ordinates. If we expand m as a series of polynomials m® of order 7 in u, v, ', v’, and if we
allow for a small chromatic variation characterized by a parameter ¢, we obtain an expan-
sion of the form m = m®-+mO+ ... +emO 4 em® 4 ... (1-2)

the term m@ is of no importance and m® vanishes since the z-axis is a ray. The ray
co-ordinates in the Gaussian image plane z = z, may similarly be expanded as series of
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homogeneous polynomials «, v in the ray co-ordinates «,, v,, «,, v, in the object and
aperture planes z = z,and z = z,:
uy = uP +u@+ .. euTFeuVt .,
vy = VP 40P+ ..+ O 4 P }
By a suitable choice of co-ordinates, the paraxial terms reduce to «P = f u,, v\’ = g,v,.
The terms w2, v, u®, v and VT, ¥V represent the second-order geometrical aberration,
the zero-order chromatic aberration and the paraxial chromatic aberration, respectively,
and it is the purpose of the paper quoted above to obtain their relationship to the functions
m®, mOr and m@",
The following analysis of the problem may therefore be divided into two parts: §§ 2 to 4
are devoted to setting up the variational equation in the required form and §§5 to 9 are
given to an investigation of the individual terms of the expansion (1-2).

(1-3)

2. THE METRIC

We shall adopt a curvilinear co-ordinate system (x, y, z) based on a curve called the ‘ray-
axis’ which will, in the first instance, be supposed chosen arbitrarily (figure 1). Let O be
a fixed point on the ray-axis and P an arbitrary point; then, if P is sufficiently close to the
ray-axis, there is a unique plane through P which cuts the ray-axis normally in a point N.
The z-co-ordinate of P may be measured by the arc-length, taken in a prescribed direction,
between O and N. The remaining co-ordinates, x,y, may be determined by interpreting
the normal and binormal to the curve at N as x- and y-axes, respectively, in the plane which
contains them.

Tay-axis

Ficure 1.

If ry(z) denotes the vector ON and r(x,y, z) the vector (3—13,

r(%y,2) = ro(2) +xn(z) +-yb(2), (2:1)
where t(z), n(z) and b(z) will denote the unit vectors at N in the directions of the tangent,
normal and binormal, respectively. We see from (2-1) that the change in the position vector
due to increments in the co-ordinates is given by

dr = tdz+ndx+xn'dz+bdy+yb’dz, (2-2)
where we denote by a prime differentiation with respect to z. On using the Serret-Frenet
formulae (Weatherburn 1927, p. 15) and taking the scalar product of dr with itself, we find
that the metric of our co-ordinate system is determined by

ds? = (1—«x)2dz?+ (dx—7ydz)?+ (dy +7xdz)2. (2-8)
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It will be necessary, in this and the next sections, to make some use of the tensor calculus.
We shall therefore introduce a dual notation, writing x, y, z alternatively as x!, ¥2, x%, and
writing the components of vectors such as %, %, %, as A, Ay, A3 or AL, A2, A3 according
as the vector is covariant or contravariant, respectively. Numeral indices will imply the
use of the summation convention.

The alternative notation makes it possible to rewrite (2-3) in the conventional form

ds? = g,;dxidad, (2-4)
where ¢ and j and, later, £ and / take the values 1, 2 and 3. The metric tensor g;; is given

explicitly b ‘
xplicitly by . 0 1y

(g;)=1 0 1 % . (2-5)
—1y 1% (1—kKx)24+72(22+y?)

It is necessary for us to evaluate the Christoffel symbols of the second kind which are
defined (Weatherburn 1938, p. 55) by

k __ 1~kh agjh agz'h agij} .
{ij}‘?g T+ T ) (2:6)

However, it is necessary to note the values only of the functions and of their first derivatives
on the ray-axis. If the superfix zero is used to indicate that a function is evaluated on the

ray-axis, we find that .
o = L
=T, = —K,
xz Xz

x\0 x)0
EE e
yz zz

are the only symbols which are non-zero on the ray-axis. The non-zero values of the first

(27)

derivatives are 410 7\ 9\°
= —KT } = KT { } =17
{xz}y ’ {xzx o),
0 0 0
B
xzx xzz yzz
=, [ (-
P [ = > 2'8
(o] ==, (2 == [ = (2:8)
0 0
{zZ} =7 {zz} ==
x y
e
= —K, = KT
zz), 2z}, )

3. THE ELECTRIC AND MAGNETIC POTENTIALS

As is pointed out in introductions to the tensor calculus (Weatherburn 1938, p. 58), the
ordinary derivatives of the components of a vector or tensor are not, in general, components
of a tensor; new tensors are formed by covariant differentiation. Therefore, when physical
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IMAGING PROPERTIES OF ELECTRON BEAMS 161

laws which involve spatial differentiation are expressed in tensor form, it is the covariant
derivative—not the ordinary derivative—which appears. We shall therefore establish
relations between the ordinary and covariant derivatives of the electric scalar and magnetic
vector potentials, and set out the physical relations which exist between the components
of the covariant derivatives.

Let us consider first the electric scalar potential ¢(x, y, z) ; values of this function and of
its derivatives will be written as ®(z), ®,(z), etc., when they are evaluated on the ray-axis.
The first derivatives, d/dx’, which will be written as ¢; or, alternatively, as ¢,, ¢,, ¢,, are the
components of a covariant vector. If we denote covariant differentiation by a suffix following
a comma, the second covariant derivative is defined (Weatherburn 1938, p. 59) by

4= 3~ {) 9 (31)

Since the paired indices of the Christoffel symbols appearing in (2:7) and (2-8) always
contain z, no distinction arises between ordinary and covariant differentiation unless
differentiation with respect to z is involved. This is easy to understand, for the x- and y-axes
by themselves form a Cartesian set. If we therefore omit the comma from derivatives
involving x and y only, and if we again use a prime to denote ordinary differentiation with
respect to z, we obtain from (3-1) the relations

D, ,=k®'+ D, -7,
o, =10+ D, (3-2)
O, ,=0"—«P,

and, from the formula

T TH T

D, ,. = k'O 26D — (x2+1%) D, + q),;'—f'@y-—zrcl)y'-/c@w}

the relations
X, 22

D, ., = k10 +7' D, 42710, — 72D 4 Q) — kD,

Y,22

(3-4)

Let us now consider the physical condition to be satisfied by the electric potential. In
the absence of space-charge, this is the Laplace equation which, in tensor form, is

87¢;,; = 0. (3:5)

Remembering that covariant differentiations commute, that the covariant derivatives of
the fundamental tensor vanish, and that this tensor reduces to the unit matrix on the
ray-axis, we may obtain from (3-5) the relations

(Dyy = (Dxx - q)z, 29
q)xyy = _(I)xx - (Dx, 229 (3.6)
(I)yyy = (I)xyy - (Dy, zz°

It is now possible, by means of (3-2), (3-4) and (3:6), to express all derivatives of ¢ of
up to the third order, evaluated on the ray-axis, in terms of @(z), @,(z), ®,(z), D,,(2),
®,,(2), D, (2) and P,,,(z) and their ordinary z-derivatives. These functions may therefore
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be adopted as the data determining the electric field to the approximation here con-
sidered. The expansion for ¢ in terms of these coefficients is found to be

#(x,y,2) = O+xQ,+y @, + H{x*D,, + 20y D, +y*(— D"+ 4D, — D)}
+ 323D, + 322y D, + Bxy?( — k'O — 2k D"
+ (k217 O, — O/ +7'D, + 21D, + 4D, — D)
+ 43 (k1@ —7' D, — 27O, + 72D, — O] +- kD, — D, )}

+.... (37)

This expansion may serve to relate the coefficients which we have adopted to the electrodes
defining the electric field.

Let us now consider the magnetic field. Since it is the vector potential and not the scalar
potential which appears in the variational equation of electron optics, we must introduce
the components of the magnetic vector (since # = 1, H and B are identical) by means of the
skew-symmetric tensor which is derived from the vector potential %; according to

The covariant derivative is related to the ordinary derivative by
ou, [t
= g (3:9)
It follows from (3-9) that (3-8) may also be written as
U P (3:10)

The covariant and ordinary first derivatives of the skew-symmetric tensor are related
(Weatherburn 1938, p. 62) by

@ij,k = %%’g—{ii}%—{k;}@u- (3'11)

On evaluating this formula on the ray-axis by means of the formulae (2:7), one finds, with
the notation

H(2) = 9,.00,0,2), H(2) = 9.(0,0,2), H(2) = 9,(0,0,2),  (312)
that H, . = 3gx+KHx, H, A = ng—-—'er, H, , = %ﬁJrKHZ—-THy,
H, = ‘%-HHZMHW H,, = %’;ﬂ H,, = ‘%4—1}[; - (3-13)
Hz,x:%%3 H, = 361;[2’ z,z:%~—KHx. J

Since the metric tensor reduces to the unit matrix on the ray-axis, H,, Hy, H, are the
components of magnetic field strength on the ray-axis.
The second derivatives are related by the formula

o= oL Bl
314
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From (3-14), (2-7) and (2-8) we may obtain relations which may, with the help of (3-13),
be written as

0?H, 0*H, )
_a‘xT - Hx,xx—QKEIx,x’ axay - Hx, xy+7Hz,x—'KHx,y3
0’H, J0%H.
W = Hx’yy"l‘QTHz’y, —dx“zy = Hy’xx—QTHz,x—Q((Hy,x, r (3‘15)
02H 0%H
axayy =H, ,,—1H, ,—«H, T}&i‘y = H,, - )
We need also the following two relations:
H, ., =—(*+1?) Hx—I—H;’—TIHy-27HZ;+K/HZ+2KH;———KHx’ o (316
H, ., =17H+2rH —1H +H +«rH,—«H, .. )

Let us now consider the relevant field equations. The homogeneous field equations,
which follow from the skew-symmetry of §,;, are

0ij, kT Qjk,i T 0w, 5 = 0. (3-17)
The equations (3:17) reduce, on the ray-axis, to
H, +H, +H,  =0. (3-18)
We may also confirm, by taking covariant derivatives of the tensor equation (3-17), that
H, wtH, ,+H, .. =0,
H, o+ Hyyy+H, =0, (3-19)

H,  +H, ,.+H, . —0.

X, X2
In the absence of space-current, the inhomogeneous field equations may be written in

the tensor form gjkbij’k = 0; (3-20)

since the covariant derivatives of the metric tensor vanish, we have also

8",k = 0. ' (3-21)
On evaluating (3-20) and (3-21) on the ray-axis, we obtain a number of equations of the
forms H, ,= H, ,and H, ,, = H, , which may be summarized by the statement ‘if fwo
derivatives (such as H, . and H, , ) may be interchanged by permutation of their suffixes, they are
equal in value.’

It is now possible, by means of the above rule and relations, to select a suitable set of
functions as the data determining the magnetic field to the approximation required. We
adopt the functions H,(z), H,(z), H,(2), H, .(2), H, ,(2), H, ,.(z) and H, , (z). Itis found
that the magnetic scalar potential is related to this set of coefficients by the expansion
zﬁ(xsy)z) - ¢(03 03 Z) = W{xHx—I_yHy}—l_%{xz( —KHx_Hz,_Hy,y) + 2xyHy, x+y2Hy,y}

— {3 (k2472 H,— H; +7'H +2rH,— ' H,— 2«'H, + «H, . —H, )
+3x%yH, .. +3xy’H, .,

Y, xx

+y3( ——T'Hx—-—QTH,:-I—TZHy—H;——KTHZ—I—KHy’ —H, )

Y, xx

| : (3-22)
together with the equation ;—2%(0, 0,z) =—H,(2). (3-23)

VoL. 245. A. 20
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4. THE VARIATIONAL EQUATION

It is well known (Glaser 1933) that the paths of monokinetic electrons in a static electro-
magnetic field may be derived from a variational principle formally identical with Fermat’s
principle of light optics. The equation may be written in tensor form as

5 f {1 (g 49)} — 2} dt = 0, (4-1)

where p is the scalar kinetic momentum of the beam, measured in the same units as the
vector potential, £ is an arbitrary parameter of integration, a dot denotes differentiation
with respect to ¢, and ¢ refers to variations of the integral due to arbitrary small variations
of the path of integration between fixed end-points.

If we adopt the following units:

unit of electric potential = 511200 volts,

unit of magnetic potential = 1704 gausscm,

the relation between the kinetic momentum, measured in magnetic units, and the local
electric potential becomes
P p=J(20+47, (4-2)

the zero-point of ¢ being so chosen that electrons are at rest at zero potential. The expression
(4-2) is ‘relativistically correct’; the ‘non-relativistic approximation’ is obtained by

replacing (4-2) by p = J(24). (4-2")

Calculations will be based on (4-2) but the non-relativistic forms of important formulae will
be indicated. If the system is purely electric and relativistic effects are of no interest, or
if it is purely magnetic and the beam energy is measured by p rather than @, subsequent
calculations will remain valid for any choice of units.

If we adopt the co-ordinate system of §2 and adopt z as the parameter of integration,
(4-1) may be written as
3fmdz =0, (4-3)

where
m = p{(1—xx)?+ (&' —79)2+ (4 +72) "} — (A, +y'A, + ). (4-4)
The variational function m(x',y’, x,y, z) may be expanded as-

m = mO+mO+m®+ ..., (4-5)

wherein m® denotes a homogeneous polynomial of the rth degree in x’, y’, x and y, the
coeflicients being functions of z. On expanding ¢, %, %, and %, as Taylor series in x and y,

we obtain

m) = —prx+p~1(1+ @) (x®,+yD,) — (x'Ax+y’Ay+x% +y (3;;2) ) (4-6)

where 4,, 4, A, are the values of 9, %, %, on the ray-axis, and similar, but longer,
expressions for m®@ and m®. The function p(z) is derived from

p=J(20+D?) (4:7)
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for relativistically correct calculations and from »
p=J(20) (4-7)

for non-relativistic calculations. The function m©® may be ignored.

On integrating by parts terms involving x" and y’, we may replace coefficients of the
vector potential by coeflicients of the magnetic vector. If we then make use of the relations
(3:2), (3'4), (3-6), (3-13), (3-15), (3-16), (3-18) and (3-19), we may express all field
coefficients in terms of the sets proposed in § 3 and so obtain the formulae ‘
m®D = {—pe+p7 (14 Q) O, 4 H }x+{p~' (14 ) ®,— H,}y, (4:8)
m® = §p(x2+y'?) +3(x'y—xy’) (H,—2pr)

+%x2{p72——2p_lk(l —]—d)) Q)x_p—3(1)x2+p—l(1 —|—d)) (I)xx_KHy_‘THz—I_Hy, x}
+3xy{ — 27k (14 D) O, —2p=3D, O, +2p~1(14-D) D, +H,+2H, }
Taytprt—pH (14 Q) O +p7 k(1 + @) D, —p=SBF —p~ (14 ) O, —7H,— H, },

(4-9)
and
m® = $x(x2+y"?) {pr-+p7 (14+0) DI+ 3y (x'2+y"2) p (14 D) @, 1
+3x(x'y —xy’) {—8pxr —3p~7(1+ @) O, + H, —7H,+«kH_}
+3y(y—xy’) {—3p7'7(1+ @) O, +7H 4 H}} -
+§x3{8pr7? + 3p7172(1 4 D) D, + 3p= 3k D2+ 3p~5(1 4+ D) D3 —3p~ k(14 D) D, ,
=370, D, +p7 ' (1+0) O, —27H, +-2r2H —2«7H,—2«H, ,+H, .}
+ 5282y {8p~17%(1+ @) D, + 6p~3¢ D, D, 4 9p~%(1 + D) D2 D, — 6p~ k(14 D) D,
—6p7°0, D, —3p730, @, +3p~1(1+D) O, —372H +H—1'H,
—47H,+«'H,+«H,—3«H, ,+3H, .} (£10)

+ §xy*{(Bpx1? —3p~ 1k’ (1 4+ D) @' —3p~ k(1 + @) D"+ 6p~172(1 4 D) D,
+3p730"®, —3p7 (1 + D) Oy +-3p~17' (1 + D) D, + 6p~17(1+ D) D)
—3p7 3D+ 3p 3k D24 9p=5(1 4 D) D, D2+ 6p~ k(14 D) D,
+3p730, 0, —6p730, O, —3p~1(14+-D) D, —7'H,—47H,
+387°H,—H,/—3«TH,+3«H, ,—3H, .}

T3 {07 k(14 D) ' —p~ 17" (14 @) O, —2p717(1 4 D) D+ 4p~172(1 + D) D,
+3p730"D, — p~1(1+ @) By +3p~3(1 + ®) D —3p=« D, D,
+p7'%k(1+0) D, +3p73D, ®,,—p~' (14 D) ®,,, —2r?H,—27H,— H, ).

J

We may also deduce from these formulae the functions which lead to the zero-order and
paraxial chromatic aberration. Suppose that the beam energy is increased by an amount e,
measured as an equivalent increase in electric potential. If we regard ¢ as a perturbation
parameter and adopt the notation of the recent paper on perturbation characteristic
functions (Sturrock 1951), we find that

mOt = {—p k(14 D) —p=3D }x —p=3D,y (4-11)

20-2
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and ‘
m@' = 3(x'24y'2) p~1 (1 + D) — (x'y —xy’) p~'7(1 4 D)

+30{p172(1 4+ ©) + 23D, + 3p5(1 + @) B3 —p3D, }
+axy{p~*, D, +3p73(14+ @) O, D, —p~3D, }
+397{p7 (1 4+ @) 430" —p D, +-3p75(1+ D) B2 447D, (412)

Our calculations have so far been relativistically correct, being based on the formula
(4-2) rather than (4-2"), but it is not difficult to see that the above formulae may be made
non-relativistic by replacing the factor (1-+ ®) by unity. It will be convenient to introduce
a notation by means of which the non-relativistic form of a relativistic formula can easily
be derived. We shall therefore introduce the ‘angular’ brackets ‘( )’ and understand that
the non-relativistic form of any formula may be obtained by replacing all terms contained in angular
brackets by unity. For this reason, the factor (1-+ @) will always be found written as {1+ ®).
With this notation, the formulae (4-7) and (4:7’) may be combined in the formula

P2 = 20(1+1D). (4-13)

In dealing with systems—such as mass spectrographs—for which the field potentials are
no higher than 2000V or so, the non-relativistic approximation is found satisfactory; for
field potentials above about 100000V, the relativistic treatment is necessary. Between
these limits, however, one can satisfactorily treat the ‘relativistic correction’ by perturbation
methods.

Let us consider the electron-optical system defined by (4-1) in which p is now replaced

* .
by p* defined by p* = /(20 +09?), (4-14)
where ¢ is a parameter. The relativistic formula (4-2) is given by ¢ = 1, the non-relativistic
formula (4-2") by ¢ = 0; the first-order relativistic correction may therefore be obtained by

regarding o as a perturbation parameter and evaluating the first-order perturbation for
the particular value ¢ = 1. The appropriate variational functions are found to be

d mOR = 3{—poe+ 3p0 -+ §pD,y (415)
an
mOR = 2o p*(x2+y'D) —§pr(x'y — )

+gx2{p3r2 — 6px D, + 3p~ 17+ 3pD,,}
+dwy{ — 3px @, + 3p~ 1D, D 4 3pD, }
+1eyH PP —3p D" + 3pk D, -+ 3p~ D2 — 3pD, 1, (4-16)

wherein the superfix ‘R’ has been adopted to denote the first-order relativistic correction,
and p is to be derived from (4-7).

5. THE PARAXIAL RAY EQUATIONS

In the last section we established a number of variational functions which will determine
certain of the imaging properties of electron beams in arbitrary fields. In the present section
we shall concern ourselves with the functions m® and m® which are given by (4-8) and (4-9)
respectively.
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Let us consider the condition that the ray-axis should be a ray traversing the field. This
is clearly the condition that the variational equation (4-3) should have * =y =0 as a
solution which is satisfied if and only if m(, expressed as a linear combination of x and v,
vanishes identically. Hence, from (4-8),

_ “1TO+0YO +H, =0,
pe+p7 1+ Oy D+ H, } (51)

P+ DYD,—H, = 0.

The relations (5-1) may be regarded as formulae for @, and ®, or for H, and H,; our choice
will obviously depend upon whether the field is purely electric, purely magnetic, or com-
bined electric and magnetic, and it is therefore necessary to introduce a notation which
will distinguish between these cases. The introduction of a suitable notation will also
make it easier to draw from general formulae the particular case, which often arises in
practice, that the field is either electric or magnetic. V

Let us introduce the two parameters E and M defined as follows:

E = 0 if no electric field is present,

E = 1 if an electric field is present;

(5-2)
M = 0 if no magnetic field is present,
M =1 if a magnetic field is present.
We may note in particular that
1—M = 0 if the field is not purely electric,|
1—M = 1 if the field is purely electric, J 2

and a similar rule for 1—E. Henceforth it will be understood that in any formula which
contains E and M we should, if the field is purely electric, set E = 1, M = 0; if the field is
purely magnetic, set E = 0, M = 1; and, if the field is combined electric and magnetic,
setE=1, M =1.

It is now proposed that we treat (5:1) as formulae for @, and @, if the field is purely
electric, but as formulae for H, and H, otherwise. Thus

D, = pP(1+ D),
@, =0

H =Ep~'(1+D) D,

H, — pe—Ep1 1+ D) D,

} if M = o,
(5+4)
} ifM = 1.

The formulae (5-4) will be taken into account in all subsequent calculations.

Since m vanishes, the integrand m of (4-3) tends to m® as #’, y’, x and y decrease. If we
exclude from the present paper the discussion of electron mirrors, so that x” and y’ become
small as ¥ and y become small, the ‘paraxial’ properties of electron beams may be derived

1 This notation was suggested by Mr D. J. Behrens of A.E.R.E.
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from m®. The paraxial ray equations are therefore the Lagrangian equations derivable
from this function which are found to be
S+ M2 L
PR prt+ (1= M) (1414 B)2) —Ep (1 + B D,
+MTH, —H, ) +EM(p™ (1 + D) @, +p~20F)} x
A{—p7 —E(p7 M1+ DY D' +p~ K1+ D) D, ) -MH, |
FEM (P (L O B, 00,0, )by = 0, R
Sy~ -2 &
+{pr' +E(pT 1+ QYO —p~ K1+ DY D, ) —M(H,+H, )
+EM(p k(14 DY D, +p3D, D, )} x
F{—p? = (1-M) p*+E(p 1+ DY D" +p K1+ D) D)
+M(rH,+H,, ) +EM(—p~ (1 + D) D, +p=3D)) }y = 0.
Itis seen that each of the ray equations involves, in general, both x and 7 ; in consequence,
the expression of the general solution of (5-5) necessitates the introduction of eight functions
of z. On considering the point characteristic function which represents the paraxial
imaging properties of the system, it is found that the condition that two planes should be
stigmatically imaged is the vanishing of a certain set of three coefficients; the imaging is
geometrically similar only if two relations are satisfied among another set of three coefficients.
The treatment of the paraxial properties and, consequently, the subsequent calculation
of aberrations also, are simplified considerably if we limit ourselves to systems for which
we may so transform the x-, y-axes that each of the equations (5-5) contains only one off-axis
co-ordinate. Such systems will be termed ‘orthogonal’.

6. THE ORTHOGONALITY CONDITION

- Itis well known that it is often necessary to perform co-ordinate transformations in order
to bring to light the paraxial image-forming properties of electromagnetic fields. In this
section we shall investigate under what conditions such a transformation is profitable and

consider its consequences.
It will be convenient to write the paraxial variational function (4-9) in the form

= Lp(x'2-y'®) + iy — )+ bt by +- b, (61)
where = MH,—2pr,
g = pr—(1—M) 31+ §2) X1+ By 2 +Ep (14 DY D,
M (= pr2—7H, 4 H, ) —EM(p~16(1+ ) D, +p~3D2),
r—E2p~ K1+ @y D, +M(H.+2H, ) —EM(2p (14 Dy D, +2p=30,D,),
§ = pr (1= M) pi2 —E(p 11+ DY O+ p~(1 + D) D,.)
—M(rH, +H, ) +EM(p~ k(1 + D) @, —p—502).
Let us now suppose that it is possible to transform the co-ordinates (x,y) into co-ordinates

(u,v) so that m® takes the form
m® = H(pu'2+ U) + (0 + V9. (63)

(6:2)



http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

%

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

IMAGING PROPERTIES OF ELECTRON BEAMS 169

The Lagrangian equations are then

Sy -vu=0 and L (pP)-ve=o, (6-4)
which are in the ‘separated’ or ‘orthogonal’ form which greatly simplifies the investigation
of paraxial properties; if U(z) = V(z), the paraxial system is ‘Gaussian’. Let us therefore
consider under what conditions it is possible to transform the function (6-1) into the
form (6-3).

There are, fortunately, restrictions upon the transformations it is profitable to consider.
If the separation can be effected at all, it can be done by a transformation which does not
change the scale of the co-ordinates as is obvious, for, once the separation is achieved,
magnification of the co-ordinates cannot create ‘mixed’ terms but it can restore the original
scale. Itis also seen that we should neither adopt oblique co-ordinates, for the transforma-
tion then introduces a term in #’v’, nor displace the origin, for first-order terms then appear.

It follows that the only transformation of interest is one which represents a rotation of
the x-y plane about the ray-axis. Such a transformation may be written in the form

x4iy = (u+1v) elx, (6-5)
where y(z) is real.

By partial integration of the variational equation, we may verify that (6-3) is obtained
from (6-1) by means of the transformation (6-5) if and only if

t=2py (6-6)
and r= (U—V)sin2y,
¢ =3(U+V)+3(U=V)cos2x+py? (6:7)

s=3U+V)—3HU—-V)cos2x+px'%
These may otherwise be regarded as a set of four equations to be satisfied by the three
quantities U, V and y; we should therefore establish the condition for the existence of a
solution to these equations. This condition may be obtained by noting that the equations

(6:7) give tan 2y = r/(g—s), (6-8)
and that this is compatible with (6-6) if and only if
pir'(g—s) —r(g' =)} = #(g—9)*+77 (69)

The relation (6-9) is therefore the ‘ orthogonality condition’.
If the condition (6-9) is satisfied, we may solve (6-7) for U and V to obtain
A AR
V= 4g+9)—3d((g—5) )~ 1.
Hence if r and ¢—s do not both vanish and if (6-9) is satisfied, the functions (6-1) may be
transformed to (6-3) by means of (6-5) ; the function yis given by (6-8) and Uand V'by (6-10).
If r and ¢ —s both vanish, the orthogonality condition is satisfied but y cannot be obtained
from (6-8); it is then defined only by (6-6) which leaves it undetermined to the extent of
an additive constant. We also find from (6-10) that U and V are then equal being given by
U=V=q—%}p ' (6-11)
This is the Gaussian case which is met in the study of fields of rotational symmetry so that
the condition that the function (6-1) should be Gaussian is that r = 0 and q = s.
It is proposed that the u-, v-axes, for which an orthogonal paraxial function takes on the
form (6-3) should be termed the principal axes of the system. The principal axes are determined

(6°10)
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uniquely unless the system is Gaussian when they are undetermined to the extent of an
arbitrary uniform rotation about the ray-axis.
The general solution of (6-4) may be written as

u(z) = 0, /() +u,h(z),)
- 0(2) = v,8(2) +0,k(2),]
where (u,,v,) and (u,,v,) are the co-ordinates of the points of intersection of the ray with the

object and aperture planes z = z, and z = z,, respectively, and the functions f(z), g(z), #(z)
and £(z) satisfy the boundary conditions

(6:12)

fo=8,=1, f,=g,=0, hy=k =0 and h,=k,=1. (6-13)
The quantities defined by Q,=p(f'h— f/z'),} (6-14)
Q= p(g'k—gk')

are constants and are therefore given by
Qu = "—pok:z or pafal’}
Qv = '—'pok; or Jbag;‘
For the purposes of aberration theory, it is convenient to define four more functions by
w(z) = Q1 f(2),  7(2) =CQy lh(z),}
B(z) = Q. ¢(z),  0(z) = Q' k(2).
It is clear from (6:12) that the condition that the object plane z = z, should be stig-
matically imaged upon the plane z = z, is that
h,=0 and £,=0, (6-17)
from which it follows also that  y,=0 and 6§, = 0. (6-18)
The imaging will be isotropic if f, = g,, the magnification being given by either side of
this equation.
Tt is necessary also to note that, since @, and @, are constant,
06;, = Q;1f1;> ylb = Q;1h2>}
Po= @ 8 0, = Q'K
Itis possible to eliminate the first-order derivatives from the ray equations (6-4) by means
of Scherzer’s transformation (Scherzer 1936)
u=pig, v=pv, (6-20)
the function p then disappears from the ray equations. It is particularly interesting to note
that the new functions U(z) and ¥(z) then satisfy the relation
U4V = —2—3p=4(3+p?) B2 —p 02— p=4D2—Lp=2H2, (6-21)
from which it is clear that 7 and ¥ cannot both be positive. We may now state that if the
optical properties are referred to the co-ordinate system (1,7, z), any orthogonal system must be con-
vergent in at least one of its principal directions. If the field is purely magnetic, p is constant so
that the statement holds also for the co-ordinate system (u, v, z).

- (6°15)

(6-16)

(6:19)

7. THE ZERO-ORDER CHROMATIC ABERRATION
We saw in the last section that the function m(® is responsible for the paraxial imaging
properties of the system. We must now investigate the effect upon the image-formation of
the functions given by (4:10), (4-11), (4-12), (4-15) and (4-16). These all produce aberra-
tions which may be calculated by the method of perturbation characteristic functions as
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setoutin arecent paper (Sturrock 1951) ; references to formulae in this paper will be denoted
by the letters ‘P.C.F.’. In applying these formulae to the present problem we must replace
X1 X9 by U, V5 Ny, Ny by Rus Mys 815 825 /Zl’ h byj; & h k kl) k by Qu) Qw and ConsequentIY>
kilg,, etc., by a, etc.
Let us consider the function m®I, given by (4-11), which is responsible for the zero-
order chromatic aberration. We may write
mOt = A, x+ A,y, (7-1)
where, in view of (5-1),
4y = —(1—=M) 2571+ §p%) k(1 + )1 =Mp~lx(1+ D) —EMp~30,,
Ay = —EMp30,. }
Calculation of the zero-order relativistic correction, due to the function m(X, is identical
with calculation of the zero-order relativistic correction. We need only replace (7:2) by

AF = (1—M) 1p3x+ML(—p3c+3pD

T= ) ip*k +Mg(—p*k+3p x)} E=1). (7-3)
Ag‘ = M%pq)y

The relativistic correction will, of course, be applied only if the field is purely electric or

combined electric and magnetic since there is no difference between relativistic and non-
relativistic calculations for magnetic fields, apart from the relation of p to ®.

(7-2)

Upon the transformation (6-5), (7-1) becomes

mOt = B u+ By, (7-4)
where B,= A4 cosx-{—A smx,} (7:5)
B, =—A4,sin x+A4,cosy.

If, according to P.C.F. (7-9), we introduce the characteristic functions defined by

*PT — fzc mOtdz, *VOI = Fc mMdz, : (7-6)
we find, with the help of (6:12), that
* V(I)I Cloc u + C2oc CSoc a + C4oc va’ (77>
where Cp — f ‘Bfdz, C,, = j B hdz,
N (7-8)

Co= [ Bagdz, Cup= [ Bod

The same formulae hold for the other characteristic function if the suffix o is replaced by a.
The formula P.C.F. (7:10) becomes, in the present notation,

o1y PHYPL grpr
¢ ¢ du, ¢ du, °’
3* V(I)I 3* pr (7'_9)
PO /5’ ac
c c C avo
from which we find that  #®%(z) = 1(z:), vOL(z) = D,(z), (7-10)
where (with the usual notation D, = D,(z,), etc.)
D,,=a,C Clacs
= 0 U3 = Ve Llae } (7.11)

2c = ﬂc 406_0602116'

Vor. 245. A. 21
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The functions D, (z), D,(z) are the coefficients of zero-order chromatic aberration (per unit
increase of beam energy) along the ray-axis. By writing

U = E,, oM =FE, (7-12)

we introduce £, E,, the coeflicients of zero-order chromatic aberration in the image plane.
From P.C.F. (7-11) or from (7-11) and (6-18), we see that

E, = “bcsob: E,=p, C4ab' (7’13)

If we do not wish subsequently to calculate the paraxial chromatic aberration, it is not
necessary to evaluate the zero-order chromatic aberration along the ray-axis but only in
the image plane so that we need calculate only the integrals C;,, and C,,,.

If we are calculating not chromatic aberration but relativistic correction, (7-2) being
replaced by (7-3), we arrive at coeflicients Df(z), D (z) and Ejf, E¥ which characterize
the zero-order relativistic correction, (7-10) and (7-12) being replaced by

uOR(z) = D}(z), vOR = D§(2) (7:14)

and uPR = EF, o0 = EF (7-15)
respectively.

It is clear that the coefficients E), E, characterize a pure displacement of the image, upon
chromatic variation, of amount ¢E in the u-direction and eF, in the v-direction.

8. THE SECOND-ORDER ABERRATION

If the beam is monochromatic, the imaging properties of the system approach the
paraxial properties—as calculated in § 6—as the size of the object and the size of the aperture
become indefinitely small. The function m®), given by (4-10), gives rise to the principal
discrepancy between the real image and the paraxial approximation to the image, the
second-order aberration. This section will be devoted to a treatment of this aberration.

Let us suppose that, upon the transformation (6-5), (4:10) takes the form

m® = Fyu(u"?40"%) + Fyo(u?+0")
+Fu(u'v—w') + Fo(u'v—u')
+Fyud+ Fou?v+ Fyuv?+ Fgv3. (81)
Then we find, taking into account the conditions (5-4), that the functions F;(z), etc.—

upon which calculation of the second-order aberrations will be based—may be derived
from the formulae ‘

F, = G cosy+G,siny, 2

Fy = —G,sin y+G,cosy,

Fy=  Gycosy+ Gysiny,

F,=—G;siny+G,cosy, (8-2)
Fy= Gscosy+Ggsiny+ G,cos3y-+ Ggsin 3y,

Fg = — G5 sin y+ G cos y — 3G, sin 3y + 3Gy cos 3y,

F, = Ggcosy+ Ggsin y— 3G, cos 3y — 3Gy sin 3y,

Fy = —G5sin y+Ggcosy-+ G,sin 3y— Ggcos 3y, J
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IMAGING PROPERTIES OF ELECTRON BEAMS 173
where*
G = (1—M) pc+Mipc +EM3p~ K1+ D) @,
G, = EM}p 1+ D) O,
Gy = —ME(2pk7+kH,) +EME (20~ 17(1+ D) D,
+2p7 1+ @) B — 230D, —3p" X1+ D) D H,),
G, = Mip’ +EME(2p7 k(1 + D) D' —2p~ (1 + D) D,
+ 230D+ 2p7 (1 + DY D, —3p~X1 + D) D H,),
G5 = (1—M) (—pr" -+ prr2-+ 5pr(L+ By —5p =11 +p2) /(1 + Dy~ @
+2p7k(1—=(0)) {1+ D)2 D2 —2p~ k(1 + D) O" —3p~ 1+ 3% k(1 + D)1 @)
+Myg(—px” + prr?+-3krH,—3kH, . —p~kH?)
+EMGE(—5p7 k(1 + DYy 1 D p=35k D2 — 4p~ k(1 + D) D"+ 2p~172(1 + D) O,
+3p7 1+ D) P20, 4 2p=3Q" D, — 2p=3D' D, — 2p~ (1 + DY D} -+ 6~ 3 D2
+ 9571+ @) D +2p~17'(1 4 @) O, +2p~ 37D’ D+ 4p~17(1 + D) D) + 3p~ 3« D2
+9p71+ @) O, V2 —3p~ (1 + D) D, — 6p°D, D, — 673D, D,
— 471+ Q) O, H,+-4p~*O'®, H, — 4p~*(1+ D) O, H,+3p~(1 + ©) O, H2),
Gg = (1—M) H(—2px'r—prer’ — 5p~ 1+ 32y kr(1 + DY ' —3p~ (1 +-3p) k(1 + D)1 D, )
+Myg(—2pK'T—prr’ — 3k H,+kH — 3kH,, )
+EMG(—5p7 k(1 + DY D' —2p~17'(1 + DY D, — 2p=3r D' D, — 4p~17(1 + D) D,
+2p7 1721+ @) O, + 3p~(1 + O) P20, + 8p=3D" D, — 2p~3D' D) — 2p~ (1 + D) D
—3p7% D, D, + 9 X1+ D) D D, + 9p~1 + D) D} + 6p~3D, D, — 3p~ k(1 + D) D,
—6p30, D, —4p~ %1+ DPYD'H,+4pX14+ D) D, H,— 4p~*®'D H,
—4p21(1+ @) O, H,+3p~1 + D) O H?),
G, = (1—M) 5 (8px” — 3pkr2+ 9pk3(1 + DY 2+ 15p~ (1 +3p2) k(1 + D)1 @’
—6p7 k(1= (0)) {1+ D)2 D2+ 6p~ k(1 + D) O" — 15p" (1 +3p?) k(1 + D)1 @,
+4p~ 1+ D) D,.,.) + M (px” —pr?+k1H,— 5cH, ,+4H, ..)
+EMGL(5p7 ' (1 + D) D'+ 4p~ k(1 4 DY D" — p=3¢D'2 — 2p~17%(1 + D) D,
—3p 1+ D) O2D,—2p73D" D+ 2p 3D’ D, + 2p~ (1 + D) D -+ 6p~ 3k D2
+3p7 1+ @) O —2p717'(1 + ) O, —2p=37D' D, — 4p~17(1 + D) D, — 3p~ 3 D2
— 971+ @) O, 02— 9pi(1 4 D) D, — 6p~3D, D, + 6p*D, D, +4p~ 1+ D) D, ),
Gy = (1—M) (2T +pir’ + 571+ 2 k(1 + DY ~1 & —13p~1(1 + 7592 k(1 + DY~ D,
+4p K1+ D) D, ) +Mylg(—2px'r—prr’ +«'H,+xH,— 3«H, +4H, )
+EMG(—p (1 + D) &' +-2p717'(1 4+ D) D, — 2p= 37D’ D+ 4p~17(1 + D) D,
=271+ D) D, + 3p~ 1 + O) D20, — 4p=3D" D, — 23D’ D) + 2p~ (1 + DY D
+9p7% D@, D, +9p~(1+ D) O D, —3p=5(1 + D) D —6p~3D, D,
=T k(1 +O) @, — 6730, D, +4p~(1+ DY D, ).

* Note that 1—(0) =1 in relativistic calculations,
= 0 in non-relativistic calculations.

21-2

- (83)
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It should be remembered, at this point, that it is not suggested that it would be practicable
to compute the properties of an arbitrary electron-optical system. Formulae are given in
their general form only in order that any particular case of interest may be extracted. The
formulae (8-3) simplify considerably if the field is purely electric, purely magnetic, or mirror-
symmetrical, or if the field is uniform along the ray-axis and the latter is a helix.
Following P.C.F. (7-2), we shall introduce the characteristic functions defined by

2 Ze
*P — f m®dz, *VE = f m® dz. (8-4)
2y Za

We then find, from (6-12) and (8-1), that
* Vécs) = Kloc ug + K2oc ug Uy =+ KSoc uz U, + K4oc ug [ + KSoc U, ?)g
+K U voua—i_K U vova+KBocuouZ+K900uouava+KlOm:uovg

6oc “o Toc %o
3 2 2 2
+ Kl loc 1)0 + KlZocvo ua _I_ Kl3ocvo va + KHoc voua + KlSoc (& ua va
2 3 2 2 3 .
+ Kl 60c Yo Vs + Kl?oc U, + KlBac Uy va + Klro Uy Vg + K200€ Vas (8 5)

where K, = ch {Fff *+F;f3 dz,
Kow = | (Faaf +FufU s ~f8) +Faf 6} dz,
Ko = [0 207 )3T R
Kiow = [ (FM "+ B f(fk~fK) + Fof Rz,
Koo = | AF e 1 Fog(f g~fe) + Fofg’} d,
Koo = [ (@Fo8f W —Fy flg'h—gh)+ Fyh(S'g—/¢) +2Fafeh}dz,
Ki = [ @R gk + Fyg( 'k fK) + Fb(f'g—fg)+ 2P, gk,
Kuse = | B2+ 201) +3F, f12)d,
Koo = [ B W By fR k=) +Fyh( f k—fK) +2Fy fik}dz,
Kigwe = | ARSK k() +F fi} dz,
- (8+6)
K= [ (Fr08* + Fyg'yd,
Kis = [ (Fuhg = Fig(g h—gh') + Frg?h s,

Kise = [ Falke’> + 208'K) +3F, g%} dz,

Kigoe = | {Fygh*—Fyl(gh—gh') + Fogh®} dz,
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IMAGING PROPERTIES OF ELECTRON BEAMS 175
Kys,, = f (2F, he'K + Fyg(Wk—hk') —F, (g h—gh') + 2F, ghk} dz,
Ky, — f (F,(gk'*+ 2kg'k') + 3F,gk?) dz,

Ky = f (F\ Wi+ Fyh%} dz,

Ky, = f (B, k2 + Fyh(Rk— k') + Foh?k) dz,

Ko, = J AR WK F k(W k—RE) + Fy hk%} dz,

J

K2000 = fzc {F2kk/2+F8k3} dZ.

The same formulae hold for the other characteristic function if the suffix o is replaced by a,
but the coefficients K, etc., may also be evaluated from the coefficients K, etc., by means

of the relations K,,. = K,,,—K,, etc. (8:7)

lac loc ™

The equation P.C.F. (7-3) becomes, in the present notation,
* (3 * (3
ui‘z) = O‘ca Voe Ve d Vac s
du, du

0
SR 746)
I*Ve

o ) PV (8:6)
Ve :/b)c ava <y

/]

from which we obtain the following expression for the second-order aberration along the
YRS () = L(2) 8+ Lo(2) 12, +Ls(2) 1ty +Ly(2) 50,
+Ls(2) v +Lg(2) vou, +Lg(2) 2,7,
+Lg(2) uf  +Lo(2) u,0, +Lyo(2) V3,

- 89
99(2) = Liy(2) 8+ Lio(2) 0+ Lig(2) e, + Lyy(2) &9
+Ly5(2) v+ Lyg(2) v,u, +Ly;(2) v,0,
+Lyg(z) w7 +Lig(2) u,v,+Lyy(z) v3, /
where
Llc = acKiioc ~37’0K1ac’ Lllc = ﬁcK‘loc - 00K2ac’ ‘1
L2c = “cKGOc '—270K2ac$ Ll2c = ﬁcK7oc - 260K5ac’
L3C = 2acK800 ~270K3ac’ LlSc = ﬂcKQOc - HCK6ac’
L4c = acKQOc “27’0K4ac’ LHc—:QﬂcKlOoc_— 00K7ac’
Lc = acK oc” cKac’ L c = cK 00_300K ac?
5 12 Vedls 15 B Kys llacs | (810)

LGC =2060K140€— 70K6ac’ Ll6c: ﬂcK1500~200K12ac’
Tac> Ll7c :216)0K1600—200K13ac,

L7c aCKl5OC— 70K

LSc = 3“0K17oc—' 70K8acﬁ L]Sc = ﬂcKISOc_ 0cK14ac$
L90 = QaCKIBoc_ 70K9ac’ L19c :2/?01(]900” 00K15ac!
L

10c = aL‘KIQOC— chIOac, L2Oc:3/))cK2()oc_ ﬁcKlﬁac'a
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The functions L,(z), ..., Ly, (z) are the coeflicients of the second-order aberration along
the ray-axis. ~
The second-order aberration in the image plane may be written as

U = Mu2 + Myuyv, +Myu,u, +Muv,)
+Mg2  +Mgu,u, +M;v,v,
+Mgu:  +Mgu,v, +M,yvZ,

v§,2) — Muug-|-M12uovo+M13uoua+M14”o”a
—[—M15’U§ +M1600ua+M17vova
+M18u3 +M19uava+MZng'

(8:11)

/

We then find, either from P.C.F. (7-5) or from (8-10), that the coefficients of the second-
order aberration in the image plane are given by

M, = oKy, Mg =20,Kyy, My= BKiy M= [,Kizm)
My,= a,Kgy, M; = 0,Ky5, Mp= BKqy Mg =28,K g,
My =20, Ky, My =30,K,75, Miz= F, Koy, Mig= f,K gy
M,= a,Koy, My =20,Kg,, My,= QﬂbKIOOba Mg = QﬁbKIQOIn
My = “bKlzoba Mu) = 0, K90y M5 = ﬂbKliiob’ Mzo = :’glé)szoob-J

~

(8:12)

We see from (8:12) that there are certain relations between the coeflicients M, etc.; for
instance, M,,/a, = 1M o/f, = K,q,,- In order to obtain the geometrical forms of the
second-order aberrations, we should therefore consider the separate effects of the terms
K,,, etc., rather than the terms A4, etc. We should find, for example, that the terms K4,
and K, are responsible for asymmetrical aberrations resembling coma except that the
patterns are not pointed. The coefficients M,, M,, My, M,,, M, and M represent pure
distortions of the image ; the coefficients Mg, M, Mg, M;, M3, M4, M, and M, characterize
aberrations which depend on both the object co-ordinates and the aperture co-ordinates;
and My, My, M,,, M5, M,y and M,, characterize ‘aperture’ aberrations which are the
same for all object points. The last set is generally the most important.

If it is not required subsequently to evaluate the paraxial chromatic aberration, it is not
necessary to calculate the coefficients of (8:9) so as to find the second-order aberration for
all z, but only to find the coefficients of (8-11) which gives the aberration in the image plane.
In this case we need evaluate only the characteristic function *V} which, in combination
with P.C.F. (7-5), gives the formulae (8-12). It should be noted that it is now not necessary
to evaluate the integrals K, K,,,, K;,, and K-

However, if the paraxial chromatic aberration will be required we shall need, in addition
to u@(z), v®@(z), the second-order aberration of the ray variables in the image plane. The
relevant formulae, P.C.F. (7-4), become

% 17(3) * 17(3)
n(2) :p a' J Vng —ﬁ ')/, 0_ Vab
ub b“%b aua b/b auo b

, 0% V(%)

(8-13)
,I*V «
n? :pbﬂb'a—vab— —pu0, 3—%“,[
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IMAGING PROPERTIES OF ELECTRON BEAMS 177
from which we obtain the expressions
ngtzb) = Nlug +N2uovo +N3uoua +N4uova
+N5Ug +N62)oua +N71)01)a
+ Ngu2  + Nyu,v, + N, 02,
8 9 10 » (8-14)
”f;%) = Nllucz)_l" N12uovo+Nl3uoua+Nl4uova
+Ny503 + Nigt,u,+ Nyz0,2,

2 2
+ N2 + Nygu,v,~+ Nyyovl.

It is clear from a comparison of (8-8) and (8-13) that the coefficients N, etc., of (8:14) may
be obtained from the formulae (8-10) for L, , etc., by replacing the suffix ¢ by 4, and «, £, 7, 0
by pa’, pf’, py’, p9’, respectively.

Before we leave this section, let us investigate to what extent the coefficients of the
second-order aberration in the image plane, M, M,, ..., M,,, are arbitrary once the system
is prescribed to the paraxial approximation. On referring to (8-3), we see that the field
coefficients @, ., ®,.., H, ..and H,  are the only quantities appearing in the second-order
formulae which are not present also in the treatment of the paraxial properties. We should
therefore examine to what extent we may determine the coeflicients of the second-order
aberration by adjustment of these field coefficients.

These coeflicients appear in G; and G and hence in Fy, Fg, F, and Fg. We see from (8-6)
that none of the latteris multiplied by the same combination of f, g, # and £ in two different
formulae. It would therefore appear that, if f, g, £ and £ are all different, we may adjust the
coefficients @,,,, etc., so as to give prescribed values to all the integrals of (8-6).

This possibility is not always realized, as can be seen by considering an important
special case. We shall suppose that «, 7 and the paraxial field coefficients are independent
of z; f, g, h and £ are then circular functions. The coefficients ®,,,, etc., are therefore multi-
plied by sine and cosine functions; moreover, it is a consequence of the focusing condition
(6-17) that the periods of the trigonometrical terms are commensurable. The four field
coeflicients will therefore appear in the integrals multiplied by certain members of a com-
plete orthogonal set of functions. It follows that the number of integrals which we can
prescribe cannot exceed twice the number of different orthogonal functions appearing in
the set of terms /3, f2g, ..., k3, for we have only two variable functions, p" K1+ ®) @, +H, .
and p~1(1+0)®,, +H, .

Let us now suppose that the paraxial variational function is Gaussian; so that /= g and
k= k. Investigation of (8-6) then shows that half of the terms of the form (f'g—fg’) vanish
while the other half are given by (6-14). It is also found that the following combinations of

integrals do not involve the field coefficients ®,,,, etc.:

xxx>

K2ob+ 3Icllob? K7ob'_‘ 2K120b) 2K100b_ KlSob?
2K3ob+ K7ob’ KBob + KlOob’ 3K17ob + KlQob’]
K4ob + Kl 30b2 Kgob + 2‘Kl 60b> KlBob + 2K200b‘

3I(lob + K5ob? 2K4ob - KGob? K90b - 2I<l40b’ ]
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These twelve relations lead us to expect that we can prescribe only eight of the integrals
(8-6); on considering only the integrals which contribute to the aberration coefficients of
(8:12) ; this number is reduced to six. Hence if the paraxial variational function is determined
and is Gaussian, the second-order aberrations have only six “ degrees of freedom’. We may verify that
this number is not reduced if the paraxial field coefficients are independent of z for six
orthogonal trigonometrical functions then appear.

9. THE PARAXIAL CHROMATIC ABERRATION

In the last two sections we have solved aberration problems of a type familiar in electron
optics. The zero-order chromatic aberration and the second-order aberration, which we
have calculated by means of first-order perturbation characteristic functions, may also be
evaluated by the method of variation of parameters. In this section, however, we shall treat
a problem which is not susceptible to the customary form of the latter method but which
may be solved by the use of a second-order perturbation characteristic function.

We are to consider the influence on image-formation of the function m®*, given by
(4-12). It will be found that this function is responsible for the paraxial terms of the
chromatic aberration or, equivalently, the chromatic variation of the paraxial properties.
Whereas the zero-order chromatic aberration is manifested as a shift of the image, in
accordance with (7-12), the paraxial chromatic aberration exhibits itself as a change of
magnification and a possible rotation, together with a defocusing, of the image.

Let us suppose that, upon the transformation (6-5), (4-12) takes the form

mAt = P (u'2+0'2) + Py(u'v—w’) + Pyu? + Pyuv+ P52, (9-1)

Then the functions P,(z), etc., are given by

Py =R, ‘

P, =R,,

Py =R;+ R,cos2x+ Rysin2y, [ ‘ (9-2)
P,= —2R,sin 2y+2R; cos 2y,

P;=R;— R,cos2y— R;sin 2y,

where
Rl = %p_l<1+q)>: )

Ry =—M3p 1+ D) H,,

Ry = (1—M) p~1eX1 4 By~ 4 Ep-30" - Myp~5(1 -+ D) H2
+EME(p73¢ D, 4 3p~5(1 + D) B2 4-3p~5(1 + D) ©2),

Ry = (1=M) 3p~ 1K1+ @) —EL ()30 +27°D,,)
+EME(p7% @, +p X1+ D) O —p=(1+ D) D7),

Ry = —E3p~3®, +EML(p~3D,+3p~ X1+ D) D, D). )

(9-3)

—
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IMAGING PROPERTIES OF ELECTRON BEAMS 179

Asin § 7, the present work on chromatic aberration applies also to the relativistic correc-
tion. In order to obtain the paraxial relativistic correction, we replace Ry, etc., by R, etc.,
given by

RY = {1

R = —M{sp°H,,

R¥ = — 3 p@" + My (— 6px®@,+ 6p~ D2+ 6p~ D2+ pH?), (E=1) (94)
R = F5(p0"+2pD,,.) — (1 —M) F6°% + M (= 3px D, + p71 07 —p1 D7),

Rg‘ = T%pq)xy—l_'l%M ( ’"qu)y +p_l®x (I)!/) ’

These formulae are derived from (4-16).
Following P.C.F. (7-12), we now introduce the characteristic function defined by

Xp DT _ f * (m — DODER?) dz, (9-5)

where the operators DO and D® may be derived from the formula

d d d d
1 I G B .
Dl =u FRRIAE s (9-6)

On evaluating (9-5) by means of (6-12) and (9-1), and (7-10), (8-11) and (6-3), we find that
*Vég)l = Sl u¢21+S2uovo+S3uoua+S4uova
+850, +Sg0,u,+S;,0,0,

+8qu2 4+ Squ,v,+ 81,0, (9-7)
where, in particular,

s, =f2b{2P1f’/Z’+2P3fIZ —pD{Ly —UD, Ly —pDyL,3—VD,L,;}dz,
Zp rre rr’

S, =L {P(f'k—fK)+Pyfk —pDiLy —UD L, —pD,L,—VD,L,,}dz,
Zh ’ e T

So = | {=Po(g'h—gh) +Pigh—pDi Ly —UD, Ly —pDjLis—VD, Ly} dz,

S.

~

= be{2P1g'k'_2P5gk _PD’lL; —UD, L, —pD,L};— VD,L,;}dz, ¢ (9-8)
Sy = be {PIIZ/Z"'“Psh2 ‘l’Dlleta —UD, L, _PD;Lis— VDles} dz,

Sg :f2b{P2(h,k—hk,)+P4hk _pD,lLIQ -—U_Dng —pD;Lig—‘VDZng}dZ,

Syo = f " (PR PR —pD}Lig—UD, Lyy—pD} Ly~ VD, Lo} dz;

Sy, Sy and S5 will not be required.

Vor. 245. A. 22
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- The formulae P.C.F. (7-13) become, in the present notation,

* (I @ @
wi_, [9*V 0195 o1 0%
Uy ™ =0 +u +up ’
du, du, du, (99)
#® (@I @ @
Ty {?.ZgL+u<0)I @Lb+v(o>1 %&}
b o b gv, TP o,

From these formulae we find, with the help of (7-12) and (8-14), that

Pt = Tyu,+ Tyv,+ Tyu,+ Tyv,, (9-10)
v = Tyu,+ Tev,+ Thu,+ Tyv,,
where
T,= oSy +E,N; +E,N,3},
T,= afS¢ +E Ng +E,Ny},
Ty = 20,{Sy -+ £, Ny +E, Ny},
Ty= ayfSy +E, Ny +E, Ny}, (9-11)

Ty = ﬂb{S‘t +E1N4 +E2N14},
To= B{S; +E,N; +E, N5},
T, = ﬂb{Sg +E, Ny +E2N19}>
Ts = 2ﬁb{S10+E1 Ny+E, N20}-J

o

(=2}

It is seen that the values of N}, N,, N;, N;;, N}, and N,; are not required. 77, ..., Ty are the
coefficients of the paraxial chromatic aberration (per unit increase in beam energy).

If we are calculating not the chromatic aberration but the relativistic correction, we
must replace (9-10) by

UPR = T¥u,+ Tiv,+ TFu,+ Tio,,
b 1 2 3 4 } <912)

oPR = T¥u,t T, + Tiu,+ Tio,

where T, ..., T§ are now the coefficients of the paraxial relativistic correction.

We see from (9-10) that 74, 7T,, 75 and T characterize the chromatic variation of the
magnification. If we suppose, for simplicity, that f, = g,, there is a uniform expansion and
rotation of the image if 7, = T and T, = — T; the fractional expansion is ¢ 7 /f,, and the
angle of rotation is ¢ Ts/f,. The coeflicients T, T, T, and Tj characterize the defocusing
effect. If f, = g, and @, = @, so that a, = f§, also, then T}, = T; if T3 = — T}, a circular
aperture of radius 7, will produce a circular image of a point object of radius ¢r, ./( T3+ T%).
If T, =0, then T, = 0 and chromatic variation will split the focus of a point object into
two foci distant —e75/k, and —eTy/k; behind the image plane; if T3/h;, = Ty/k;,, there is
a pure displacement of the focus without splitting.

10. EXAMPLE: A HELICAL BEAM IN AN ELECTRIC FIELD

It is now proposed that, as a simple example of the application of the theory set out
in the present paper, we should derive the imaging properties of an electron beam which
moves in a helix in the field of a pair of coaxial cylindrical electrodes. By making the
radius and the diametral pitch equal, we shall obtain Gaussian image-formation.
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IMAGING PROPERTIES OF ELECTRON BEAMS 181
The co-ordinate system is shown in figure 2. If we take the radius and the pitch to be
a and 27a respectively, then K(z) = 7(2) = 3a-L. (10-1)

Since the field is purely electric, formulae appropriate to the present problem are
obtained by setting E = 1 and M = 0. Also we may restrict ourselves to a non-relativistic
treatment by replacing all terms enclosed in angular brackets by unity. It will not be
necessary to employ the units of § 4, since we shall not investigate the relativistic correction-

The only non-zero field coefficients in the problem are ®, ®,, ®,, and ®,,,, and among
these there exist the relations

D, =2¢d, and @D, = 8«2D,. : (10-2)

Ficure 2.

All coefficients are independent of z. We find from (3-7) that the potential in the
neighbourhood of the axis is given by

P(x,y,z) = O+ {x+ kx?— xy? + 54243 — 2c%xy?} D, (10-3)
It may in this way be verified that the coefficients adopted indeed represent the field
between cylindrical electrodes for the field of the latter is given, in the present co-ordinate
system, by §(x,9,2) = O—Jaflog {(a—x)* + 147} —2log d}, (104)

and (10-3) may be derived from (10-4).
The equation (4-13) now becomes

| p=J(20), (10-5)
and the relations (5-4) reduce to the relation
O, = p’k=a10. ' (10-6)

22-2
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Let us now investigate the paraxial properties. The formulae (6-2) reduce to
t=—2pk, q=1=s5=0, (10-7)

so that the orthogonality condition (6-9) is obviously satisfied. Since r and ¢—s both vanish,
the paraxial focusing is Gaussian and y is determined by (6-6). We may therefore write
x(z) = —«kz. | (10-8)
The principal axes are therefore related to the original axes by
U = XCOSKz—y sin Kz,
(10-9)

v = xsIn KZ+ Y COS KZ.

Let us choose as the co-ordinates of the object and aperture planes z,= 0 and
z, = (3m) k! = ma. Since, from (6-10),
U=V=—p?, (10-10)
the functions which determine the general paraxial ray are
f(2) = g(2) =coskz, h(z)=k(z) =sinkz, (10-11)
so that the equations of the general paraxial ray are
u(z) = u,cosKzZ+u, sinkz
v§z§ = v: cos KZiZ): sinKzf} (10-12)
It is clear that if z, = mk~! = 2ma, the focusing conditions (6-17) hold; the paraxial magni-

fication 1s —1.
The constants and functions defined by (6-15) and (6-16) are found to have the values

Qu= Q= —1x | (10-13)
and a(2) = B(z) = —p~ coskz,
y(z) = 0(z) = —p~ 'k 1sin KZ.} (10-14)

The zero-order chromatic aberration may be found from the formulae of § 7. We find
from (7-2) that A
1

so that, from (7-5),

= —2plk, Ay=0, (10-15)
B, =—2p~lkcoskz, B,=—2p"lksinkz. (10-16)
The integrals (7-8) then give the expressions

Ci.(2) = 4p~Ym—2kz—sin 2z},
Cou(z) = Lp~Y{1+cos 2z},

10-17
Cyo(2) = —3%p~1{1 —cos 2z}, ( )
Cy(z) = —4p Y2z —sin 2z},
from which, with the help of (7-11), we obtain the results
D,(z) = p~ 2k Yinr—kz}sinkz,
(&) = 4 ) 018
D,y (z) = p~%~kz coskz.

Hence, or from (7-13), E,=0 and E,=—-mp %", (10-19)
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IMAGING PROPERTIES OF ELECTRON BEAMS 183
so that ) U =0, VO =—7ad1, _ (10-20)

which shows that there is no zero-order chromatic shift in the u-direction.
Let us now proceed to evaluate the second-order aberration. The formulae (8-3) give
for the non-zero coefficients the simple expressions

G, = pk, G; = %p«3, (10-21)
from which, by means of (8-2), we find that
F| = prcoskz, Fz= 3pK*cos3«kz,
F, = pxsinkz, Fg= k3 sin 3kz
2 p ’ 6 [) H] (10‘22)
F,=0, F, = —pk3cos 3kz,
F,=0, Fy = —1pk3sin 3kz.

It is proposed that the second-order aberration and the paraxial chromatic aberration be
found only for the object point #, = v, = 0, so that only the purely aperture-dependent
coefficients of these aberrations will be evaluated.
For this purpose we require the following functions which are found from the formulae
(8:6): Ky, (2) = fepx®{155sin 2kz+ 6sin 4kz —sin 6kz},
Ky, (2) = d5px*7+ 8 cos 2kz— 3 cos 4kz+ cos 6kz},
K,,(2) = &5 px¥24(kz— %) + 9sin 2kz+sin 6kz},
K4, (z) = 5% —5—9 cos 2kz— 3 cos 4kz - cos 6kz},
K,5,(2) = g5 px?{— 3sin 2kz+sin 6kz}, (10-23)
K6,(2) = #5px*{11 49 cos 2kz— 3 cos 4kz— cos 6kz},

K,7,(2) = 145 px*{17—9 cos 2kz— 9 cos 4kz - cos 6kz},
K 5,(z) = f5px*{9sin 2z — 6 sin 4kz+sin 6kz},
Kiq,(2) = &5px*{18—15 cos 2kz+ 3 cos 4kz—cos 6kz},
Ky, (2) = 15z k¥ 24kz— 9sin 2kz —sin 6kz}.

We now find from (8-10) that

Ly(z) = gx{—10coskz+9 cos 3kz+cos 5kz},
Lg( ) = fek{2sinkz+ 3 sin 8«kz+sin 5kz},

L,y(z) = §«{48(kz—}m) sin kz— 2 cos kz+ 3 cos 3kz— cos 5kz}, (10-24)
. .
L4(2) = gx{—10sin kz— 9 sin 3kz+-sin 5kz},
Liy(z) = gox{— 14 cos kz+ 15 cos 3kz—cos bkz},
Ly (z) = sx{—48kz cos kz+ 22 sin kz+ 21 sin 3kz —sin 5«z},
and hence, or from (8-12), that
The second-order aberration for the central object point is therefore given by
UP =0, o = ima~10?, (10-26)

22-3
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so that the second-order aperture aberration has the effect of lengthening the image of
a point object into a line parallel to the v-axis, which extends to the ‘positive’ side of the
paraxial image point and whose length is proportional to the square of the linear dimensions
of the aperture.

We need also the values of the following coefficients which appear in (8-14):

Nig=3pk%, Nig=0, Ny =—3pxs. (10-27)

The paraxial chromatic aberration may be evaluated by the formulae set out in §9.
The functions given by (9-3) reduce to

Ry =3p7,
R, =0,
Ry = p~ix?, (10-28)
R, = 3p7 'k,
Ry =0,
so that we obtain, with the help of (9-2),

Py =§p,

Py =0,

Py = 1p~1k%(24cos 2«z), ¢ (10-29)

P, = p~x?sin 2z,
Py = $p~1k%(2—cos 2«z).

Since we wish to obtain the paraxial chromatic aberration only for the object point
u, = v, = 0, we need find only Sg, Sy and §},. Using the formulae (9-8) and with the help
of (10-10) and (10-24), we find that
Sg=2mpk, Sg=0, S,=2Imp~ k. (10-30)
The formulae (9-11), with (10-19) and (10-27), then give the result
Ty=mp~2, T;=0,
3 =" ’ } (10-31)
T,=0, Ty = 3mp=2,

from which we see that the aperture-dependent part of the paraxial chromatic aberration
is given by Ut = In®- 1y, P = 37d-1y,. (10-32)

Since Sq = 0 but Ty T, the paraxial chromatic aperture aberration may be interpreted
as a splitting of the focus of an object point into a pair of foci. If the increase in beam energy
is ¢, the u- and v-foci are distant ena®~! and 3ema®~!, respectively, behind the image plane.

Let us now gather together the results obtained for the present problem and express
them in terms of the original co-ordinate system. We find from (10-12), (10-20), (10-26)
and (10-32) that the co-ordinates of a ray in the image plane are related to their co-ordinates
in the object and aperture plane by

u, = —u,+ yen® lu,, }

10-33
vy = — 0,4 tma~ 102 —ena®@ 1+ Zen 1o, ( )
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to the approximations adopted in this paper. If we now transform according to (10-9),
we obtain x, = x,+ Len @1y,
Yp = Yo—2ma"'x2 +ema®! —%ewq)‘lxa;}

It is interesting to investigate whether we can so choose the aperture position that
T5and Ty become equal. Itis easily found from the equations (A 4) of the appendix that
T, = T,if z;is aroot of the equation 2tan z; = z;, a particular solution of which is z; = 0.
Upon a chromatic variation the focus, which is not split, is then displaced a distance
ema®~! behind the image plane. On combining our calculations of the zero-order and
paraxial chromatic aberrations, we find that the focus is displaced from (0,0,z,) to
(0, ema®~1, z, +ema®-1), which clearly represents a displacement of the image point by a
distance e7r,/2a®! in a direction parallel to the axis of the cylindrical electrodes.

The above result has been obtained by Gabor (1951) in his elegant investigation of the
chromatic aberration of helical systems. However, on studying the arguments by which
Gabor’s results are obtained, one must regard the agreement as fortuitous. According to
Gabor’s calculations, the result depends neither on the choice of aperture position nor on
the values of @, and @, , whereas it is clear from the present treatment that these factors
both influence the paraxial chromatic aberration.

If we calculate the paraxial chromatic aberration of the circular beam of radius 7, with
which Gabor commences his study, we find that

T, = (13—, /D), T,=0, }
T, =0, T, = in(—11+730,, /D),

so that there is no splitting of the focus only if @, = 12®/r3; the longitudinal shift is then
—Lemr®~1, which disagrees with Gabor’s value of —3enr®~!. This example is interesting
in that the zero-order chromatic aberration and the second-order aperture aberration
both vanish so that the aperture-dependent part of the paraxial chromatic aberration is
independent of the aperture position; this is exceptional.

The error in Gabor’s calculation is to estimate the chromatic shift of focus by considering
the behaviour of an electron following the central ray only of a beam, for the term
‘focus’ refers to a pencil of rays, not to a single ray. It should also be remarked that the use
of the term ‘ chromatic shift of focus’ must in each case be justified—as we have already seen
—since, upon chromatic variation, the focus may be lost or may split into a pair of foci.

(10-34)

AprPENDIX. CHANGE OF APERTURE POSITION

In the foregoing calculations, it has been assumed that the aperture is specified from the
outset. However, one may decide to leave the aperture position arbitrary until its influence
upon the aberrations can be assessed. We shall therefore investigate in this appendix how
one may calculate the change in the imaging properties of a system due to a change in its
aperture position.

The co-ordinates of a ray in the image plane are related to its co-ordinates in the object
and aperture planes by (1-3), i.e.

Uy, = t, [+ eulO* + uP 4 eulr, }

v, = v,y + VP02 +e§Pr,

(A1)
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where «®1, oL 42 @ and @t ¥{PT are given by (7-12), (8-11) and (9-10). Let us now
suppose that, upon changing the aperture from z = z, to z = z, all the coefficients f,, £
etc., appearing in these expansions are changed to f,, E;, etc. We then obtain a pair of
equations similar to (A 1) which relate «,, v, to u,, v,, uz, v;.

If we take into account the second-order aberration and the zero-order chromatic aberra-
tion but ignore the paraxial chromatic aberration, we have the following expressions for
the ray co-ordinates along the axis:

u(z) = u,f(z2) +u,h(z) + e (2) +u®(2),
v(2) = 0,8(2) +0, k(2) + v (2) +0(2),
where «®(z), v@X(z) and u?(z), v?(z) are given by (7-10) and (8-9). The equations (A 2)

may be used to relate uz, v; to u,, v,, 4, v,, and so to compare our two sets of equations

(A2)

for u,, v,.
In this way it is possible to express the barred coeflicients in terms of the unbarred
coefficients. Apart from the trivial results f, = f, g, = g;, E, = E, and E, = E,, we find that

~

Ml = Ml_Msj%/ha‘FMf-z/hg
M2 = My— M, g;/k;— M [/l + My [ 85/ Pz o
M, s/l —2M, f3/12,
E :M4/kz 9fa//la @’
My = My— M, g,k + M,,g2/k2, (A3)
M o/la— Mo gz /M kg
M7 = M7/k§—2M10ga/k§,
M o/ 2,
MQ Q/ha a’
/TIIO = 1o/ka J
and
Ty = Ty— Ts fylha— My Dy hy— M, D[k + 2My D fo/ 2+ My Doy £ hz ks,
T, = Ty— T,g;/k;—M;D valla— My Dyg ke + My Dlaga/h ks a+2Mo D, g, /R, (A4)

Ty = Tslhg—2My D 5/h% — My D il h ks,
T,= Ty fkg—MyD5/hgkz—2M, Dy K.

The corresponding formulae for M, ..., M,, and T3, ..., Ty are obtained by replacing
M,..,Mgyand T\, ..., T, by My, ..., My, and T, ..., T}, respectively. The relations (A 4)
demonstrate most clearly the dependence of the coeflicients of paraxial chromatic aberration
upon the coefficients of zero-order chromatic aberration and second-order aberration.

We may find, in the same way, the change in the coeflicients appearing in (A 2) due to
a change in aperture position. It is found that

J2) = f(2) = foh(2) [hgs  h(2) = h(2) R,
4 g(2) = g(2) —g:k(2) ks K(2) Zk(z)//fa,} (A5,
D\(z) = Dy(2) = Dyzh(2) [hgy Dy(2z) = Dy(2) — Dyik(2) Ky, (A 6)
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and that the formulae for L,(z), etc., may be obtained from (A 3) by replacing M, by
L,(z)—L,;h(2)/hzfor r =1,...,10 and by L (z) — L,;(2) [k; for r = 11, ..., 20.

The author wishes to thank Dr L. Marton of the National Bureau of Standards and
Professor P. Grivet of the University of Paris for their encouragement of the work upon
which this paper is based.
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